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Solute trapping and solute drag in a phase-field model of rapid solidification
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During rapid solidification, solute may be incorporated into the solid phase at a concentration significantly
different from that predicted by equilibrium thermodynamics. This process, known as solute trapping, leads to
a progressive reduction in the concentration change across the interface as the solidification rate increases.
Theoretical treatments of rapid solidification using traditional sharp-interface descriptions require the introduc-
tion of separately derived nonequilibrium models for the behavior of the interfacial temperature and solute
concentrations. In contrast, phase-field models employ a diffuse-interface description and eliminate the need to
specify interfacial conditions separately. While at low solidification rates equilibrium behavior is recovered, at
high solidification rates nonequilibrium effects naturally emerge from these models. In particular, in a previous
study we proposed a phase-field model of a binary dllayA. Wheeleret al, Phys. Rev. E7, 1893(1993]
in which we demonstrated solute trapping. Here we show that solute trapping is also possible in a simpler
diffuse interface model. We show that solute trapping occurs when the solute diffusion BpHthis
comparable to the diffuse interface thickness. Hérns the interface velocity anB, characterizes the solute
diffusivity in the interfacial region. We characterize the dependence of the critical speed for solute trapping on
the equilibrium partition coefficieritz that shows good agreement with experiments by Aziz and co-workers
[see M. J. Aziz, Metall. Mater. Trans. 27, 671(1996]. We also show that in the phase-field model, there is
a dissipation of energy in the interface region resulting in a solute drag, which we quantify by determining the
relationship between the interface temperature and veld8t063-651X%98)13709-]

PACS numbes): 68.10.Jy, 82.65.Dp, 64.70.Dv

[. INTRODUCTION around the interfacial region. The phase-field model pre-
sented in this paper provides a common framework for mod-
Sharp interface models of alloy solidification employ theeling both the bulk phases and the interfacial region and for
solution to the conventional diffusion equations for heat andavoiding the requirement for separately derived constitutive
solute in the bulk phases. The matching of solutions at théaws for the interface conditions. The composition profile
solid-liquid interface is obtaineth) from the flux conditions through the interfacial region, as well as in the bulk phases,
required for conservation and) through constitutive laws is obtained through this method.
for the interface temperature and the jump in concentration Many of the ingredients of the phase-field approach to
across the interface as functions of velocity. The latter argolute trapping can be found in the continuum interface mod-
obtained from separately derived models of the solute diffuels of Baker and Cahpl13—-15 and Hillert and Sundman
sion across the atomic layers associated with the interfacg16] (for solid state transformationsThey compute the ve-
see, for example, the continuous grow@G) model of Aziz  locity dependence of the concentration profile across a mov-
and Kaplan[1-3] as well as otherf4—9]. The velocity de- ing diffuse phase boundary for a prescribed chemical poten-
pendence of the jump in concentration is termed solute traptial profile. The latter also make a separate analysis of the
ping and provides a mechanism whereby the jump vanishelsee energy available for, and that dissipated by, the bound-
at high rates of solidification in a manner consistent withary motion. The energy dissipated is called solute drag, a
experimental observatior{partitionless solidification subject also treated by Cal7]. As we will see in this
While this modeling approach has met with considerablepaper, solute trapping and solute drag are included in the
success, it is clear that at high rates of solidificatddn phase-field governing equations that arise naturally out of
(around 1 m/y the diffusion lengtiD, /V, whereD, is the gradient flow thermodynamics.
diffusion coefficient in the liquid, that is predicted by the  The phase-field model for modeling solidification uses a
conventional diffusion equation is comparable to the interscalar variablap (the phase fieldto describe the thermody-
face thickness for metals. At such length scales diffuse internamic statgliquid or solid) of the various regions of a sys-
face theoriegsee, e.g., the work of Cahn and Allgh0,1]  tem. Interfacial regions between liquid and solid are identi-
and Cahn and Hilliarf12]) are often found to provide more fied by smooth but highly localized transitions of the phase-
reasonable descriptions of the diffusion process in andield variable. For numerical calculations, the advantage of
the phase-field formulation of solidification is that the inter-
face is not tracked but is given implicitly by a contour of the
*Present address: School of Mathematical Sciences, Universitiariable . Phase-field models of solidification for pure ma-
Sains Malaysia, 11800 Minden, Penang, Malaysia. terials have existed for many yeaf&8—20. With recent
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advances in supercomputing this approach has allowed thgpood agreement with recent experimef#s].
computation of realistic complicated growth morphologies Conti[46,47 has extended the WMB2 model to include
such as dendritic growtf21—-27. nonisothermal and time-dependent effects and found that the
For alloys, a model for diffuse interface motion in a sys-transient solute segregation at the interface can differ signifi-
tem with a miscibility gap in a solid solution phase has beerfantly from the predictions of the CG model. Fife and
treated by Langer and Sekerk28]. However, only recently Chargcl‘_[48] have studied a number of different sharp inter-
has the phase-field method been extended to binary systen{gce limits for a class of phase-field models of a binary alloy
Application to alloy solidification was performed for an iso- that include WBM2 as a special case. The solute trapping
thermal binary alloy by Wheeler, Boettinger, and McFadderfney observe is related to the solute gradient energy as in
[29] (WBM1), who also studied its properties in the sharpWBM2. Plapp and Gouy€49] have considered mean-field
interface limit. Laven, Bechhoefer, and Tuckermf80] also ~ €quations derived from lattice gas models and examined nu-
discuss the formal analogy between an isothermal binary americally the isothermal dynamics of planar solidification;
loy phase-field model and the nonisothermal phase-fieldhey observe oscillations of the growth velocity during so-
model for a pure material. Caginalp and X81] described a  lidification. . _ .
phase-field model of a nonisothermal binary alloy. They Conti[50] and Kim, Kim, and Suzukj51] have also in-
studied a variety of different sharp interface limits and re-dependently considered solute trapping in the context of the
covered versions of the equilibrium conditions at a sharpVBM1 model, with similar conclusions concerning the
interface, none of which exhibited solute trapping. Lin andMechanism of solute trapping based on numerical computa-
Rogerg32] have also studied an order parameter model for di0ns. Conti has extended the model to include nonisothermal
binary liquid that is based on the general framework devel€ffects and computed one-dimensional, time-dependent solu-
oped by Fried and Gurtif83,34 for order parameter models tions for planar growth that show good agreement with pre-
that describe configurational forcg85]. Realistic simula- dictions of the CG model. Kim, Kim, and Suzuki derive an
tions of alloy dendritic growth have been performed by War-approximate analysis for the effect of trapping at low veloci-
ren and Boettingef36]. Phase-field models have also re- ti€s and obtain good agreement with low-velocity numerical

cently been developed for eutectic alloys, by a number of@lculations. _ _
workers[37—41]. The outline of this paper is as follows. In Sec. Il we

The phase-field model of a binary alloy in WBM1 is d_escribe the general characte_ristics of exi_sting solute trap-
based on a single gradient energy term in the phase-fiel@ing and solute drag models in our notation and compare
variable ¢ and constant solute diffusivity. The phase field them in a general way to the phase-field approach. In Sec. Il
then varies through the interfacial region on a length sgale W€ summarize the details of the phase-field model that we
that is associated with the gradient energy coefficiertve consider. Section IV presents numerical calculations for one-
examined the sharp interface limit in whidp is much  dimensional solutions of the phase-field equations that ex-
smaller than the diffusion lengtB, /V and recovered the hibit solute trapping at high solidification rates. Some

conventional sharp-interface jump conditions based on locgtSymPptotic results in the high-velocity limit are given in Sec.

equilibrium assumptions. In particular, solute trapping wag? that reinforce the numerical results and provide explicit

not found to be possible in this limit. In subsequent Wc,rkexpre_ssions for th_e characterist_ic velqcity at W_hich _solute

[42] (WBM2), we developed a phase-field model of solutetrapping becom_es |mportant_. A discussion is provided in Sec.

trapping in a binary alloy that included gradient energy terms! @nd conclusions appear in Sec. VII.

in ¢ and the solute concentratian In the WBM2 model,

the phase field and solute field have independent length !l. OVERVIEW OF TRAPPING AND PHASE-FIELD

scalesl, andl;, respectively, in the interfacial region, that MODELS

are associated with the corresponding gradient energy coef-

ficients e and 6. We considered a limiting situation<l ) i

and demonstrated that in the resulting model solute trapping Binary alloy solute trapping models are based on an

occurs when the diffusion lengf, /V becomes comparable analysis of dlffgs_|0nal jumps acr_oss.the interface. For _thls

tol5. WBM1 and WBM2 both considered the case of equa|purpose_the driving fo_rces for diffusion anq .crygtalhzat_mn.

solid and liquid diffusivities. are required. We consider free energy densities in the liquid
In this paper we reconsider our first mod@/BM1) and @nd solid phases, which we denote By(c_,T) and

show that solute trapping is indeed predicted, but in a differfs(Cs.T). respectively, wherd, ¢, , andcs represent the

ent limit in which the interface thickness remains finite buttémperature and the concentratidnsole fractions of spe-

the interface velocity is large enough that the solute diffusiorfi€SB in the liquid and solid phases at the liquid-solid inter-

length is comparable th (first briefly reported if43] and ~ face.(For simplicity we assume a constant molar volume

described in detail ifi44]). In particular, solute trapping can in the system, which eliminates possible convective effects,

be recovered without the necessity of introducing a solutéuch as those associated with a density change on solidifica-

gradient energy term. Because we now also include the podlon. The free energies and their associated chemical poten-

sibility of a variable diffusion coefficient through the inter- tials are measured in units of energy per unit volyme.

face, the relevant diffusion length B,/V, whereD, is a The chemical potentials of speciésandB in each phase

measure of the interface diffusivity. We are able to relate ou@re given by

results to the Aziz CG theory; in particular, we obtain a f

prediction for the dependence of the characteristic trapping k=1 (c, T)—c,—(c.,T), (13

velocity on the equilibrium partition coefficient that is in Jc.

A. Trapping models



3438 AHMAD, WHEELER, BOETTINGER, AND McFADDEN PRE 58

L af, here we have inserted a “thermodynamic factor” @f(1
pe=flcL, T+ (1-c)- =(c.,T), (Ib)  —c,) in order to simplify the resulting expressions below,
- while retaining generality by allowing for a possibly
of concentration-dependent mobility coefficierM,. For
ua="fg(cs,T) —CS—S(CS,T), (1  steady-state growth at velocit, the flux must also satisfy a
dCs solute balance law

\%
,u§=fs(cS,T)Jr(l—cS)iS(cs,T). (10) J=—(c.—¢Cy), )
&Cs Um
Thermodynamic equilibrium at the interface is expressed by'n€révy is the molar volume. Combining these expressions
equality of the chemical potentialgs=u5 and u5=pns, 9'VeS
which can be represented graphically by a common tangent (c —co)l
construction inf-c space at fixedl'. Equivalent conditions ut—uS= —V#, (6)
are often expressed in terms of the interdiffusion potentials MocL(1—cp)

ub= ,u,lé— ,u,'g= af loc, and uS= ,u,g— ,Uj: dfglacg in
each phase and the free energy change on solidificAtion
defined by

which in the dilute solution limit leads to a relation for the
partition coefficientkk=cg/c, of the form

Vv
of In(k/kg)= —(1—Kk), 7
AFg=fg(cs,T)— fL(CLvT)+(CS_CL)O-'_C::(CLvT) nikdke) VD( ) @

—1_ s _ L whereVp=D, /I is a characteristic trapping velocity with an
=(1=co){ua(Cs, T~ paleL, T} interface diffusivityD,=MRT/v,, and R is the universal
+cg{pa(Cs, T)— ug(cy, T} (2)  gas constant. This expression exhibits the low-velocity limit

k~kg for V/Vp<1 and the high-velocity limitk=~1 for

This expression represents the free energy change per ufVo>1. )

volume associated with removing material of compositign Baker and Cahij14] and Hillert and SundmafiL6] ana-

from the liquid and adding it to the solid phase and is knownlyze diffusion through the interface with continuum models

as the tangent to curve rule4]. Equivalent equilibrium con- that make assumptions about the details of the variation of

ditions are then given by the interdiffusion potentials and the diffusion coefficient
through the interface. In contrast, the CG model of Aziz is
L, S_ _ based on a model of forward and reverse fluxes across the
pu-—p>=0, AFg=0. (3

interfacial region using chemical reaction theory such that
is nonlinear in the quantity"— 5. We note that lineariza-
tion of their expression for]J leads to a prefactor of
cs(1—cy) in Eq. (4). In the CG model the partition coeffi-
cientk depends on the interface velocity through an expres-
sion of the form

In the dilute solution limit, the equatiop"— x5=0 re-
sults in the expressiocs=kgc, , which defines the equilib-
rium partition coefficientkg in terms of the free energies,
and the equatiolMFs=0 results in an expression for the
liquidus temperaturd =Ty +m_c_, which defines the Ii-
quidus slopamn, in terms of the free energies, whefg, is ke + VIV

X . L . £ D
the pure solvent melting point. Under nonequilibrium condi- = D
tions, nonzero values of the quantityt — 1> and the free- 1+VIVp
energy change on solidificatiahF g are interpreted as driv-
ing forces for solute distribution and phase change
respectively. These lead to response functidmy that pro-
vide nonequilibrium relations between ,cs, T, and the in-
terface velocityV. The response functions define kinetic
laws that reduce to the above equilibrium conditioi3%

®

in the dilute solution limit forkg<<1. HereVp represents the
characteristic interface velocity scale on which the solute
trapping occurs. The quantityy is given byD, /I, whereD,
represents an interfacial diffusivity arnds the thickness of
the interface, equal to the atomic jump distance. Since, how-

whenV=0 ever,D, is not subject to direct experimental determination,
the value ofVp cannot be measured directly. Instead, values
1. Expressions for the partition coefficient for Vp are inferred by fitting the observed dependencé of

. . on V using the expressiof8). By studying trapping in a
A simple example of a nonequilibrium model for solute nymber of alloys, Smith and Azi@5] have found that the
segregation can be obtained by assuming that the jump igapping velocities/,, depend on the particular alloy. In par-
interdiffusion potential actually occurs over a small interfacejcjar Vp was found to correlate most strongly with the
width |, tLypichIy of atomip dimensions, to create a gradie”tequilibrium partition coefficienkgs; Vp was not found to
Vpu=(u-—p7)/l and a diffusion fluxJ of solute across the  correjate strongly with either the liquid diffusivi, or the
interface, measured in the reference frame of the sample, a$)iq diffusivity Ds. Smith and Aziz[45] also consider a
L s multistep CG formulation in which the interface consists of a
—My (u=—p>) @ finite number of discrete layers that, in the proper limit, re-

= Um cLl=c)= ; sembles a diffuse interface.
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The Aziz CG model has been extendedkig>1 [52]. can be derived in the dilute solution limi$4]. Herea=1 if
The appropriate expression farcan also be derived using solute drag is included angl=0 if solute drag is negligible.

the formalism of Ref[53] to give The parametexr may also be interpreted as a measure of the
concentration of the material transferred from the liquid to
_ ke +VIVp the solid stat¢54]. The equilibrium liquidus slope is, and
= C) o oS
1+VIVp the kinetic coefficienu is given by
in the dilute solution limit. This form is similar to that ¢8), V. L
but involves instead the reciprocalslofindkg . The expres- w= = > (15
sions(8) and(9) are based on a redistribution potential dia- RTy

gram in which a barrier height is assumed to maintain a fixed i _
distance above the higher of the two double-well minimaln these dilute models, wheteis the latent heat per mole of
(see[53]). Most of the available experimental data pertain toth€ pure solvent.

the caseke<1, although in this paper we shall also briefly It is useful to consider in more detail the solute drag. The
consider the cask:>1 for completeness. energy dissipated per unit volume per unit time due to diffu-

Note that the CG expressioi8) for ke<1 can be ex- sion through the interfacial region is obtained by considering
pressed in the form the term

v -3
k—ke=y-(1=K), (10) b=5-3-Vu (16)

across the interface. For steady-state one-dimensional solidi-
fication, the energy dissipated per unit volume solidified is
given by[3,16]

which exhibits the same high- and low-velocity limits as the
expression(7). Indeed the two become identical whégp
tends to unity.

2. Expressions for the interface temperature P= v_mfﬁ Jd—MdX (17)
V — 00 )

Expressions for the interface temperature can be derived dx

from models involving the change in free-energy densityA
upon solidificationAFg. For example, a model that relates
the interface velocity to the driving forc®Fg [54] is given

UmAFS
“TRT

2
f(¢>,c,T)+%|V¢>|2 dv, (18)

Um(AFS_AFD) F= J;),
c RT :

Fp as given by Eq(13) is an approximation to Eq.17)
(se€[3]). Jmsson and Agrefb5] have proposed a model for
b AFp wherec, in the prefactor in Eq(13) is replaced by the
y mean ofc_ and cg. This yields a value olx=1/2 in the
vmAFg expression(14). Hillert and Sundman evaluate the solute
V=V41—ex;{ RT ) ~— (11 drag directly using the solutions to their diffusion equations
[16]. Gurtin and Voorheefs6] develop a general thermody-
whereV, is the maximum speed of crystal growth at infinite "@mic description of a sharp interface far from equilibrium
driving force. Such a model assumes that the entire freetn@t includes discussion of forces, fluxes, and solute drag.
energy change upon solidification can be devoted to driviné‘Iu [57] provides a compact summary of solute drag models
the solidification. So-calledolute dragnodels assume that a 10r Solidification.
fraction of AFg is dissipated at the interface; the amount
dissipated is denoted hyF . The driving force for solidi- B. Phase-field model
fication is then assumed to be provided by the remainder, The WBM1 model[29] is based on the Helmholtz free-
denoted byAFc=AFs—AFp, leading to an alternate ex- energy functional given by
pression of the form
F{vaFC)
1—ex RT
Aziz and Kaplan 3] consider a specific model for the inter-
face dissipation given by

V=V,

(12)  whereQ is the volume occupied by the system and the gra-
dient energy coefficient is assumed to be constant. The
phase-field variablep vanishes in the liquid phase and is
unity in the solid phase. In the phase-field model for a binary

AFn=(C —c S(ce. T)—us(c, T alloy, the free energy densify ¢,c,T) is based on the bulk
p=(CLCIilua(Cs. )~ walCL, T)] free energies, andfg and can be written in the form

S L
—[ug(cs, T)—uglcL, T} (13
LglCs T~ el T} f(6.CT)=p($)fs(c,T)+{1-p(d)}HL(c,T)
In both cases an expression for the interface temperature of W(c)
the form +—79(4), (19

m,C..[ 1—k+[Kk+(1-k)a]in(k/ke)
k | 1—ke B

\Y
T=T,+ — where
72

(14 9()=¢*(1-¢)% p($)=¢*3-2¢); (20
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g(¢) is a double well with minima a$p=0 and¢=1 and  This expression has the form of a response function analo-
p(¢) satisfiesp(0)=0 andp(1)=1. W(c) represents a bar- gous to Eq(6) that relates the driving force for solute redis-
rier height that is related to the surface energy and interfactibution u(c ) —u(cg) to the interface velocity, with a
thickness[29]. In either of the bulk phasesy(¢) vanishes concentration-dependent factor given by the integral over the
andf(¢,c,T) reduces to the bulk free-energy densityor  interfacial region. Evaluation of E428) ultimately leads to
the velocity dependence of the partition coefficik(\V).
The governing equations are chosen to ensure that the
Helmholtz free-energy functionaF is monotonically de-
creasing in time and to conserve the total solute within the Next we multiply the phase-field equatié3) by d¢/dz

fs.

2. Driving force for phase change

system by setting and integrate to obtain
dd OF —V [+I2 +1/2
gt M 15_¢' eh |V| -2 ¢2d :_[d)z]l/ 2 j—l/z foddz @9
th: Y. M (c(l—c)ﬁ % ) ' 22 We then integrate by parts twice to obtain

+112 .
f fopdz=[f(¢,0)]%, —Jll f.c,dz=[f(¢,c)1"3,

whereM ;>0 andM,>0. The constani  is related to the
interface kinetic coefficierlisee Eq(44) below] and the sol-
ute mobility coefficientM , is related to the solute diffusivity B f“’z
D [see Eq(45) below]. 2
We now cast these governing equations in a different o
form to enable a comparison with existing trapping models. _ 112
In a frame moving with velocityV, the steady-state one- =[f=(c=cyfe] "2+f (C=Co)p-0z
dimensional phase-field equations have the form

fo(c—cg),dz

(30)
_ 2
Vdé d_¢ _ ‘9_ where we have writtep = 9f/dc. The latter integral may be
=é (é,c,T), (23) . ; :
'V| dz dz2 ¢ rewritten using Eq(26) to give
_V dC d\] f+|/2 2 Umf+|/2
- dz=[f—(c—cg)f +— Judz.
o e (24 »bz [f—( SfclZie V2 P
(31
with a flux J defined in terms of the interdiffusion potential
w=aflac by If we set
d’u +1/2 2 2
vaz_c(l_C)MZE_ (25) a=| dz~f ¢;dz~const (32
We assume the interfacial layer extends over the rangeand
—1/2<z</2, where to a good approximation the solute field
varies fromcg to ¢, and the phase field assumes its far-field _[¢ |/2”2 (33)
values. z
1. Driving force for solute redistribution we obtain
The solute equatiof24) can be integrated once to yield av O [H1I2
—= AFS——J Ju,dz (34
Vv M3
—(c—cg)=J, (26)
Um where
where we have assumed that the flux vanishes in the solid
AFg=f(cg)—[f(c )+ (cs—c)f(cC 35
wherec=cg. Using the definition(25), this expression can s=f(eg~[f(e)+(es~eufe(cL)] @9
be manipulated to obtain is the free-energy change upon solidification. This expres-
sion has the same form as E2), with a dissipation term of
dp  —vmd _—V(c—Co) (27)  the form(17).
dz c(1-c)M, c(1-c)M; We anticipate therefore that analysis of solute trapping
) ) ) with the phase-field model will closely parallel results ob-
and integrating over the layer gives tained by previous models. The approximations and/or as-
e sumptions made in previous trapping models regarding the
_ __ (c—cy d og  behavior of the interdiffusion potential across the interface
m(cL) = p(cs) - : (28) o ; .
~12¢(1=Cc)M, arise in a natural way from the underlying formulation of the
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phase-field model. Similar expressions for the difference in 1 72—Vt
chemical potentials across the interface and free-energy ¢=5 1—tan (42
an a : 2 2l
change upon solidification have been derived for the WBM1
model independently by Kim, Kim, and Suzul$l]. We ; i locity ai b
next describe the phase-field model in more detail. or a specific velocity given by
IIl. IDENTIFICATION OF MATERIAL PARAMETERS V=—M€Ba(T) V2Wh. (43

The Helmholtz free-energy volume density¢,c,T) in . _~ . N -
Eq. (19) can be written in the equivalent form This has the formV= us(TAo—T), with a kinetic coefficient

1A given by

RT
f(¢lch):CfB(¢1T)+(1_C)fA(¢1T)+m|(C)v ~ 6M1LAIA
(36) L N (44)

where the functiori(c)=c In c+(1—c)In(1—c) is related to o o

the entropy of mixing. The function(¢,T) andfg(¢,T) The solute diffusion coefficier® has the form

represent the free energies of the pure matedalsnd B,

respectively, with corresponding freezing temperaturgs RT

and Tz, which we assume satisfliz<T,. They are repre- D= MZa' (45)
sented by double-well potentials with respectd#tp as used

by Kobayashi21], A constant value for the solute mobility coefficielt, re-

sults in a solute diffusion coefficient that is constant through-

¢
fi(¢,T) :Wij ufu—1j[u—1/2—g;(T)]du out the system.
0 To treat unequal diffusivities in the liquid and solid
W W, 3:(T) phaseg36], the solute mobility coefficient must be assumed
= T’g(¢)+ %p(@ (370  todepend onp, leading to an expression far(¢) that takes

the appropriate limiting values in each phase. One choice is
obtained by linear interpolation of the bulk diffusivity

for j=A,B, whereg(¢) and p(¢) are given in Eq.(20). through the interface

Here W, and Wy are constants and the temperatiirés a
parameter in this isothermal model. We assume That T
<T, and —1/2<BA(T)<0<Bg(T)<1/2. The constants D(#)=Dgr(¢)+D[1-r1(#)], (46)
W, and Wy may be related to the surface energiesand

og and the interface thicknesshsandlg for the pure com- wherer(¢) is a suitable smooth function with(0)=0 and

ponentg29], e.g., r(1)=1, for example,r(¢)=¢. Another possibility is to
linearly interpolate IrD through the interface, which is con-
eJW,/2 € sistent with a linear interpolation of activation energies if
oA~ A= W2 (38 Arrhenius expressions are assumed for the solid and liquid
A e X .
diffusivity. This produces the expression
or
Ds r(¢)
€2=60uly, Wr=120,/l4, (39 D(¢)=DL<D—L> , (47
and the functiong8,(T) and Bg(T) may be related to the
latent heats, e.g., which we also examine below.
Our numerical and asymptotic results provide a verifica-
WaBA(T)  (T=Tp) tion that the solute trapping occurs at a characteristic velocity
6 CA T, (40 Vp~D,/l5, where the interfacial diffusivityD, is approxi-

mately given by the value dd(¢) at ¢=1/2. This suggests
whereL , is the latent heat per unit volume of the pure com-the consideration of a three-parameter model for the diffu-
ponentA. Note that since we assume a constant valuesfor sivity in which D(1/2)=D, appears as a parameter indepen-
we have the constraint,la=oglg; in particular, assuming dent ofDg andD,, as in
in addition that any one of the equalitie¥,=Wg, oa

=0p, Orla=Ig holds implies that the other two hold as well. D(¢)=Dg($)+D [1—1()]
For the case of purd, the one-dimensional phase-field
equation +{D,—[D_+Dg]r(1/2)}s( ), (48
194 2192_4’ _ a1) wheres(¢) is a smooth function that vanishes f¢r=0 and
M, at —€ o2 ° ¢=1 and is unity for¢=1/2; an example is given by the

basic double-well potentia( ¢) =16g(¢). We also include
has the traveling-wave solution numerical results fobD(¢) of this form.
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TABLE |. Thermophysical properties used in calculations. 0.090
La 2350 J cm?
Lg 1725 J cm? 0.085
Ta 1728 K 1
Tg 1358 K
oA 2.8x10°° J cm? 1
e 2.8<10°5 J cni? © 00807
R 2428 cm stK™!
D, 10°° cnm? st 1
Dg 100 cnP st 0.075 7
Ia 6.48<10 8 cm
Ig 6.48<10°8 cm ]
0.070 Ty
-50-25 00 25 50 75 100
IV. NUMERICAL SOLUTION z/tA

We have numerically integrated the governing equations £ 1 computed solute profiles for six different values of the
interface velocityV obtained by using the linear model Eg6) for
D(¢) with Dg/D_ =10"°. The values ofVI,/D, are 8.58

x 1073, 8.58<1072, 0.429, 0.859, 2.58, and 8.58. The curves are
ordered so that the interface velocityincreases from the top curve
to the bottom curve.

~Vd¢ _d?¢ of
M—lazézd_zz_ﬁ(¢lci-r)l (49)

. (50

djof
~V(c=C9=C(L=C)Mp g~ (4,C.T)

at the interface positiorb=1/2 is given by the arithmetic

mean ofD, and Dg, which is approximatelD, /2 in this

V\/le usefgftml_tetdlffelr ery::he’\(lilscrenzattl)on o(fjthe de”;’f?t'vesforbase, this result is consistent with the expectation that trap-
a large finite interval with Neumann boundary conditions for iy "\l oceur on a velocity scal®, /1, .

¢ and a mixed boundary condition far that admits the In contrast to the solute profiles shown in Fig. 1 the cor-

applr_opriate far-field decay Ifor(;he _solu’t\le field. The rreWSléll_tiggresponding phase-field profiles are almost identical over this
honlinear equations are solved using Newton's method; deznge of velocities. This is because the velocity-dependent
tails are given in Ref[44]. F_or the purposes of illustrating _term on the left-hand side of E449) is negligible for the

the behavior of the phase-field model we used the materig nge of interface velocities employed in Fig. 1 because of

parameters .gi\./en in Table | unless _otherwise noted, thesﬁﬁe relatively large magnitude ofl ;. Indeed, this is why it
values are similar to those employed in WBM1, but with the reasonable to view in Eq. (32) as nearly 'constant

same surfgce energy for each pure component.. The far-fiella For our diffuse interface model witke<1 we adopt the
concentration was set te,.=0.071744 1, which corre- definition

sponds to a solidus temperature of 1700 K. For these param-

eters, the dilute limit of the ideal solution model yields an C.,

equilibrium partition coefficient okg=0.7965 and an equi- k=2 (52)
librium liquidus slope ofm = —310.9 K. max

_ _ for the nonequilibrium partition coefficient, wheeg,,, is the
A. Results for D(¢) linear in ¢ maximum value of the concentratiofWhen kge>1 an
In Fig. 1 we show representative computed concentratio@nalogous definition is obtained by replacing,y by the
profiles for several values of the interface velodity hold-  minimum concentratiog,,;,.) This definition reproduces the
ing the other parameters fixed. We have used the expressi@orrect limiting behavior in the limit of small growth rates, in
(46) for D(¢), with Dg/D, =10 ° andr(¢)=¢. Inasharp which casec..=cg andc,,,,= C,_ correspond to the appropri-
interface model with equilibrium interface conditions, as theate equilibrium values for the solid and liquid concentration.
velocity increases the maximum concentration in the liquidlt also exhibits the appropriate high-velocity linkt-1 as
at the interface would be fixed at 0.09 and the length scaléhe concentration becomes uniform with,,,=C... This
D, /V of the solute profiles in the liquid would progressively definition fork assumes that the maximum value of the con-
shorten. For the phase-field model, Fig. 1 shows that at lowentration profile is the appropriate analog to the liquid in-
velocities the solute profile is similar to that given by the terfacial concentration in a sharp interface model. If signifi-
sharp interface model. However, as the interface velocity in€ant interface adsorption were to occur, it may be difficult to
creases, not only does the solute decay length diminish, bseparate this effect from the effect of bulk solute segregation
the maximum value of the solute concentration decreases @ the moving interface. In that case this definition of the
well, indicating a reduction of the segregation of solute neapartition coefficient may be inadequate and an alternative
the interfacial region and therefore the presence of solutdefinition must be employed. Our assumption gt o is
trapping. We observe that solute trapping occurs when thatended to circumvent such ambiguities by reducing the
interface velocity is large enough th¥i, /D, becomes of driving force for adsorption at the interface. We will return
order unity. Since for this example the diffusion coefficientto this question below.
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1.00 4 1705.0 1
T
0.95 1702.5 1
0.90 1 1700.0 -
~4
0.85 1 1697.5 1
0.80 1695.0 -
0.7 BUPULLLLL L R LU UL L | 1692.5 -
10° 10° 100 100 100 16 10
WA/ Dy 1690.0 -
10° 10° 10" 100 100 16

FIG. 2. Open squares denote the values of the partition coeffi-
cientk=c., /cyax Versus the normalized interface velocify, /D WA/DL
obtained from our numerical computations by using the linear
model (46) for D(¢) with Dg/D,=10"5. The solid curve shows
the corresponding dependencekobn the interface velocity that is
predicted by the CG model as given by HE§2) with Vpl,/D,
=0.232 given by the large-velocity asymptotic limit in the expres-
sion (63).

FIG. 3. Data points denote the temperat(ineK) obtained from
our calculations for different values of growth velociyby using
the linear model Eq(46) for D(¢) with Dg/D, =10"°. The upper
curve shows the temperature given by Ety) without solute drag
(a«=0), the lower curve shows the temperature given by this ex-
pression with solute dragd=1), and the middle curve shows the
temperature given by this expression with the asymptotic value

As can be seen in Fig. X, increases towards unity as the é“:24/35)-

interface velocity increases. To quantify this dependenc
vn\;r?irceh(lj(”\/?/;gyéc\;vmept?;g icnotr;]?sus\;{zs ]% rs\elgﬁzuog Sglrgg't“:gast'(;_nse%terface kinetics becomes significant and the temperature
A ' r rapidly for larger velocities.
results are shown as the data points in Fig. 2. Also shown b9€c eases rapidly for larger velocities
the solid curve in Fig. 2 is the expression given by the CG ) :
model, B. Results for logD(¢) linear in ¢
We next consider a diffusivitid (¢) given by the expres-
(52 sion (47) with Dg/D, =10"° andr(¢)= ¢. Computed con-
centration profiles for several values of the interface velocity
. ) . _Vare shown in Fig. 4. In contrast to the results shown in Fig.
where Vpla /D =0.232 is the normalized critical velocity 1 the solute profiles in Fig. 4 show that in this case trapping
predicted by a large-velocity asymptotic expansion describe@ccyrs at significantly lower values of the interface velocity;
below. The CG model, coupled with the asymptotic expresin fact, the trapping occurs before the characteristic length

sion for Vpp, is seen to give an excellent description of thep, /v of the solute boundary layer has become comparable
numerical results for solidification velocities ranging over six

orders of magnitude. A least-squares fit of the numerical data 0.090
using the CG form withVp as a fitting parameter gives a 1
value of Vpla /D =0.244, which is visually indistinguish-
able from the large-velocity result shown in Fig. 2.

In Fig. 3 the data points show the dependence of the com-
puted interface temperature on the interface velocity. The
three curves show the temperature predicted by the CG 1
model as given in Eq14), with, from top to bottoma=0 ©  0.080
(no solute drag a=24/35, anda=1 (solute dra@} The
other parameters used in the CG model are the equilibrium 1
values ofkg=0.7965 andn, = —310.9 K, and the value of 0.075
Vp=0.23D, /I, determined from the asymptotic analysis. 1
The intermediate value ofa=24/35 results from the
asymptotic analysis of the large-velocity limit described be- 0.070 s N
low and is seen to give an excellent comparison with the 50 -25 00 25 50 75 100
numerical results for this casélhe asymptotic result for the 7z /l
temperature field assumes thag/D, =1. The good agree- A
ment between this asymptotic result and the numerical data g, 4. computed solute profiles for six different values of the
for Ds/D_=10"° suggests insensitivity of the temperature interface velocityV obtained by using the logarithmic mod@l?)
to this ratio) At low velocities the temperature tends to the for D(¢) with Ds/D,=10"5. The values ofVI,/D, are 8.58
solidus temperature of 1700 K. At intermediate velocities thex 1073, 8.58< 102, 0.429, 0.859, 2.58, and 8.58. The curves are
temperature increases, tending toward Tggemperature of  ordered so that the interface velocityincreases from the top curve
1703 K. Before thely temperature is reached, the effect of to the bottom curve.

_ ke+VIVp
C1+VIVp ]

0.085
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1.00 1705.0
T
0.95 1702.5 -
0.90 1700.0
A
0.85 1697.5 -
0.801 1695.0
0.75—|:n11m|:n11nrn11m|:rmn|:m1m|:rmnrm1mrrmnrrrrn] 1692.5
10°10°10*10°10%10" 10’ 10' 10°
Vep/Dy 1690.0 <y Ty T
~ PP -~ =1
FIG. 5. Open squares denote the values of the partition coeffi- 107107107107 107 10" 10" 10° 16°
cientk=c., /cnax Versus the normalized interface velocify, /D Vi, /Dy

obtained from our numerical computations by using the logarithmic
model (47) for D(¢) with Dg/D,=10"5. The solid curve shows
the corresponding dependencekobn the interface velocity that is
predicted by the CG model as given by HE§2) with Vpl,/D,
=1.942x 102 given by the large-velocity asymptotic limit in the
expression(63). The dashed curved represents the same CG for
but with a least-squares fit valig,|, /D, =4.467x 10 2.

FIG. 6. Data points denote the temperat(ineK) obtained from
our calculations for different values of growth velociyby using
the logarithmic mode{47) for D(¢) with Dg/D, =10"°. The up-
per curve shows the temperature given by Bdf) without solute
rag (@=0), the lower curve shows the temperature given by this
expression with solute dragr& 1), and the middle curve shows
the temperature given by this expression with the asymptotic value
(a=24/35).
to the interface thickness. Since for this example the diffu-
sion coefficient at the interface positieb=1/2 is given by D  andDs. However, this is not necessarily so. In Fig. 7 we
the geometric mean); D) of the liquid and solid diffu- show the effects of varying the interface diffusiviy; fol-
sivities, this result remains consistent with the expectatiodowing the form given in Eq(48) with fixed values of the
that trapping will occur on a velocity scal, /1, which in  bulk diffusivitiesD, =Dg=10"° cn? s 1. The calculations
this case is a much lower velocity due to the influence ofare performed for a fixed velocity given by=0.8D /l,,
Ds<D, . which is chosen so that significant trapping occurs for the
In Fig. 5 the data points show the computed partitionratio D,/D_ =1 (dashed curye The solute segregation
coefficients for this case. The solid curve in Fig. 5 is theacross the interface is observed to be quite sensitive to the
result of the CG model, wher¥pl,/D, =1.942<10 2 is  value ofD,; asD, increases, the characteristic trapping ve-
the normalized critical velocity predicted by the large-locity D, /I, becomes larger and the solute profile tends to-
velocity asymptotic expansion described below. The CGward its equilibrium form. FoD,/D <1, the trapping ef-
model, coupled with the asymptotic expression Y4y, is  fects become more pronounced as trapping is predicted to
found to give an adequate description of the numerical reeccur at lower speeds.
sults for large solidification velocities, but there is significant
gualitative disagreement for lower velocities. A least-squares
fit of the numerical data using the CG form with, as a
fitting parameter gives a value &fpl,/D, =4.467<10 3 |
and is shown as the dashed curve in Fig. 5. The least-squares 0.085
value provides an overall improvement in the fit over the |
whole range of velocities, although the agreement is still
rather unsatisfactory. O 0.080-
In Fig. 6 we show the dependence of the interface tem- 1
perature on the interface velocity and compare it with the
temperature predicted by the CG model both with and with-
out solute drag. We have used the least-squares ajue
=4.467x10 3D /I, which gives better agreement than the
asymptotic value foVp, although here, as in Fig. 5, the

0.090

0.075

agreement is rather poor. The CG results do not appear to 0.070 e
give good agreement with the numerical results for a diffu- =50 -25 00 25 60 75 100
sivity of the form (47). z/l A

FIG. 7. Solute profiles at a fixed growth velociyl,/D
o =0.86 for various values of the interface diffusivity. The diffusivity
The results shown in Figs. 1 and 4 suggest that the onse given by Eq.(48) with r(¢) = ¢ ands(¢)=16¢%(1— ¢)2. The
of trapping behavior occurs at characteristic velocities thatatio of bulk diffusivities is fixed aD, /Dg=1. The values of the
scale with the ratio of the interface diffusivit®, to the ratio D, /D, are, from the top curve to the bottom cuni2,/D,

interface widthl, . In the preceding sectiori3, depends on =10, 5, 2, 1(dashed curve and 1/2, respectively.

C. Results for D, independent of D, and Dg
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1.00 variation across the interface. Asg/o, increases from
unity, the equilibrium solute profile corresponding to a sta-
0.95 tionary interface develops a minimum in concentration in the
interfacial region since this produces a lower surface energy
0.90 while still retaining the equilibrium concentrations of the
bulk phases. This minimum persists under finite rates of so-
A 0.85- lidification and the nonequilibrium solute profiles then ex-
hibit both a maximum(due to solute rejectignrand a mini-
0.80 mum (due to negative interface adsorptian concentration
near the interfacial region. For a fixed velocity, as the ratio
075 4 oglo, increases the maximum concentration increases, and
becomes large enough that the associated partition coeffi-
070 cient can be less than the equilibrium valdeskg, as
.70 T TTIT T TT T T T T . .
10° 10° 100 100 100 10 10° shown in the figure foog/oa=4.
Vi /D,
- o ) V. LARGE-V ASYMPTOTICS
FIG. 8. Partition coefficienk=c,, /Ccay versus the normalized

interface velocityVl, /D, obtained from our numerical computa- In order to help interpret the numerical results presented
tions for various ratios of the surface tensiomg/o, with Dg  above in which solute trapping is significant, we now de-
=D, =10"° cn?s™*. From top to bottom the curves have scribe results of an asymptotic expansion of the solution in

ogloa=1, 3, and 4, respectively. the large-velocity limit. We focus on the range of velocities
for which trapping effects are significant and the effects of
D. Results for op# o7 attachment kinetics are small; details are given in the Appen-

The CG model predicts that the partition coefficidnt dix. Here we summarize the results in the dilute solution
varies monotonically withv, which is consistent with the limit c.<1. The phase-field solution is given to leading or-
calculations shown in Figs. 2 and 5 and available experimerder by
tal data. However, Bakdi 3,15 describes the possibility of
a nonmonotonic dependence of the partition coefficient on #(2)=¢9(z2) +O(1N), (549
velocity. He considers a model that assumes that the non-

. (55

ideal part of the chemical potential u'=u  where¢© is the planar solution
—(RT/vy)In[c/(1—c)] varies through the interfacial region
y( z
1-tanh 5—
in the interface region. This follows a suggestion by Chernov 2la
[5] that solute trapping might be associated with a state of

in a prescribed manner. A honmonotonic dependence for 1
k(V) is predicted ifu’(x) assumes a maximum or minimum ¢O(2)= >

low solute energy near the interface, which leads to a solutéhe concentration is then given by
diffusion flux in the liquid towards the interface, prior to

incorporation of solute into the solid phase. In our model we D(¢9(z2))
have c(2)=C,+ =Cp| ——
8 Vi
, g Oa Leg(T=Tg) La(T—Ta) z
M =3(E—K]g(¢)+( . Ta p() XIn(l/kE)secH(Z—lA +0(1NV?) (56)
(53

and nonmonotonic behavior @’ occurs if the contribution @nd the temperature is given by

from the first term, proportional to the nonmonotonic func-

tion g(¢), is large enough. In the calculations discussed so ~ 9 In?(1/Ke) )

far, we have takew,= o andl,=Ig [and soW,=Ws by T=To=V/pa+ zzm.C.. Vi, WJ’O(lN ),

Eqg. (39)]. The first term is then absent, resulting in a mono- (57)

tonic profile foru’. We now consider the effects of varying

the ratiooa/og . To avoid complications with our definition  \yhere theT, temperature is given by

of the segregation coefficiett=c.. /Cpax When Ca is af-

fected by positive interface adsorption effetése Sec. V)| |
) n(1/kg)

which would be expected to occur forg/o,<1, we con- To=Ta+M Co.

sider instead the opposite case witQ/ o> 1. (1—ke)
In Fig. 8 we show the partition coefficiemt=c.,/Cnay

versus the normalized interface velocMi,/D, obtained In deriving the expression for the temperature field we have

from our numerical computations for various ratios of theassumed that the diffusivity is constant and denotedby

surface tensionsz/o,=1. The calculations are performed (D,=D_ =Dg); for a general diffusivityD (¢), the O(1/V)

with D(¢) constant to simplify the interpretation of the re- temperature correction is given by a solvability condition

sults by eliminating the competing effects of diffusivity that is difficult to evaluate in closed form.

D,

(58)
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A. Solute trapping where
From the definition(51) of the partition coefficient for 2 14 A HEEINE:
ke<1, we find that in the large-velocity limk may be rep- T a1+ — } (65)
resented as S51-A 4\11+A
3[D(4%(z,)) Zm ) is the value of tant®2l,) for z=z, andA=Dg/D, . The
k=1-g Vi |n(1/kE)SeCH(2—|A +O(1N9), expression(64) has the same general form as the expression

(59) (63), with D, given by a weighted arithmetic meanBf and

D, . For the limiting case that the solute diffusivities of both
where we have used the expressi@®6) to evaluate the phases are equalb—1, we find that*—0 andz,—0, and
maximum value of the solute concentration, which is asthe expressior(64) reduces to the expressid83). In the
sumed to occur at=z,,, With ¢(z,,) =Cnax. The appropri- Mmore realistic case when the solid diffusivity is much less
ate value forz,, depends on the specific form that is assumedhat liquid diffusivity, A <1, the interface diffusivity may be
for D(¢). If the diffusivity is constant, then the maximum approximated by setting =0, in which case/p assumes the

occurs atz,,=0, leading to the expression form
3 DI _ 648 DLIn(llkE) - _,DLIn(]./kE)
k=1-g Vi, In(1/kg) +O(1N?), (60) Vo= g1 ko) O Ak 69

whereD, denotes the constant value of the diffusivity. This The expressions(64) .and (66), bqth produce the value
Vpla/D =0.232 that is used in Fig. 2 to compare the nu-

expression is also appropriate if the assumed form of a non*Db'A . . . . .
constant diffusivityD (¢) still gives rise to a maximum in merical compu_tanons_thh_ the Aziz trapping function.
c(2) atz,=0; in this caseP,=D(1/2) denotes the value of __ FoF the choica (¢)= ¢ in Eq. (47) for D(4), the extre-
the diffusivity at ¢=1/2. For example, this expression ap- MUM may be found from Eq56), resulting in the expression

plies for the case(46) with a function r(¢) that has

r'(1/2)=0, which makesic/dz vanish az=0. This expres- 3 { V D§_1+t*)D(Sl_t’):||n(1/kE)
. - ; e S Vp==[1—(t*)?]? , (67
sion also applies to the ca$48) with D,=D(1/2); in this D8 N (1—kg)
case, the resulting expression is independeri? ondDs.
The Aziz trapping function foke<1, where now
Ke+V/Vp A 47
:m, (62) t _InA+ 1+ InA) . (68
can be approximated by The expressiof67) has the same general form as the expres-
sion (63), with D, given by a weighted geometric mean of
Vp Vp |? Dg and D, . This expression is used to produce the value
k~1-(1-ke)| | T Ol | ) (620  Vpla/D =1.942<10 ? that is used in Fig. 5 to compare the
numerical computations with the Aziz trapping function for
N ; : this case.
for Vp/V<1. Comparing Eqsi60) and (62) gives that The two expressions fovy both involve weighted aver-
3[D,|In(1ke) ages ofDg and D, which are determined by the specific
VD=§ E (1—kg)" (63)  form of D(¢) that is assumed through the interface region.

This need not be the case; in particular, the use of a more

. } . . complicated model foD(¢) such as given by Eq(48)
Comparing the large-velocity expansions for the phase f'el(gvould produce an expression fuk, that is independent of

model and the Aziz trapping function thus gives a predictionD andD
i : intar. DS L-
that the trapping velocity/y depends not only on the inter The expression fol given by Eq.(63) holds for ke

face diffusivity and thickness but also upon the equilibrium<1 A simil Vsi b ducted fee=1 i
partition coefficient, a trend noted experimentally by Smith ™~ Similar-analysis may be conducte E=4, I

and Aziz[45] which case we find that

With the choice (¢) = ¢ in Eq.(46) for D(¢), the solute
maximum generally occurs far,,#0 and the resulting ex-
pression folVy is more complicated. The result may be ex-
pressed in the form

3 DIn(kg)

ngm (kEBJ_) (69)

ThusVyp, is predicted to increase &g deviates from unity in
either direction.

3 ; e :
VD=§[1—('[*)2]2 Finally, in Fig. 9 we compare the experimental data for
Vp obtained by Aziz and co-workefsee[58]) for both sili-
D [(1+t*)/2]+Dg (1-t*)/2]|In(1/kg) con and aluminum alloys to the quantity kg/(ke—1). The
X i -k correlation indicates that our theory is in qualitative agree-
A ( E) ment with the experimental results, correctly predicting an

(64) increase inVp with decreasing equilibrium partition coeffi-
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ture differencesand one sought to determine how much of
that driving force remained available for the motion of the
grain boundary. Calculation of the solute diffusion process
and the dissipation of energy were thus performed to deter-
mine the reduction of the driving force. In the solidification
literature a similar postulate has been made about the exis-
tence of a separate driving force for solidificatideg. (2)].
Hence the solute drag is normally computed separately and
used to erode the driving energy. The results of E8#.and

I | I |
&0 e Sin

40 — —
ALL
® A A

.Sl

VD (m/s)
1
T

20 —

Si-Ge
* Si-As

o Si-Ga

o Si-Sn

o Al-QUALGe

. Si-Sb

4
In kg /(g - 1)

(35 show the natural reduction of the driving force by the
dissipation.

We have investigated the effect of different assumptions
regarding the variation of the diffusion mobility through the
interfacial region by varying the form of the functi@ ¢).
These differences change the velocity at which solute trap-
ping becomes important and also presumably changes the
amount of dissipation in the interfacial region due to the
diffusion processes. Indeed, we determined that a linear in-
terpolation forD between the liquid value and the solid
value across the interface produces predictions quite similar

to those of Aziz, a model that has been subject to significant
experimental validation.

We have not investigated the sensitivity of the results to
cient. The considerable scatter apparent in the plot may béhe form of the double well to any significant degree. We
due to the unknown values @ . have, however, shown that changing the relative heights of
the double-well potentialby changingo, and o) of the
two pure components can lead to a nonmonoté&gic) func-

o i tion. In general, the use of different double-well potentials in

Here we limit our attention to the case<1 andDs  Eq, (37) as well as a nonideal solution model would likely
=D, . The interface temperature in the dilute limit given by siter the quantitative predictions of our analysis. The form
Eq. (57) may be expressed as (37) that we have chosen for the free-energy function allows
the one-dimensional traveling wave soluti@t®) for all ve-
locities [59]. Replacing the cubic functiorp(¢)= ¢?(3
—2¢) used in Eq.(37) by the quintic functionp(¢)
=¢$3(10— 154+ 64¢%) as in the treatment of Wangt al.

[60Q] relieves the restrictiong3(T)| < 1/2, but also produces a
one-dimensional traveling wave whose shape is no longer
independent of velocity; this may require changes in the in-

terpretation ofx andVp,.

In addition to the more usual case wh&ge<1, we briefly
investigated the case wheke>1. The appropriate forn®)
in the dilute limit. Comparing these two expressions for the®f the Aziz formulation for this case was compared with the
interface temperature, we find that= 24/35, the value used Present model. It was established thgf should be smallest
in Figs. 3 and 6 to compare the numerical computations witdCr alloys withke near unity and increase for alloys wikiz
the predictions of the Aziz CG model. This nonzero value formuch less than or much greater than unity. A functional form
a confirms that solute drag is present in the phase-fieldvas predicted for thie dependence d¥p, which seems to
model, as is consistent with the analysis of Sec. Il B 2. Incorrelate well with experimentig. 9).

general, we would expect the specific value obtainedfto We have some concerns about our definition of the non-
depend on the choice f@(¢). equilibrium partition coefficient as we extract information

about the prediction of the phase-field model. kg1, our
definition ofk(V) is based on identifying the liquid concen-
tration at the interface, with the solute maximunt,,,, of
The formulation of a phase transformation using a singlghe entire solute profile. Alternate definitions were tried, such
free-energy function and self-consistent postulates about th@s equating the total amount of solute abayen the inter-
kinetics has distinct advantages. Among them, the controfacial region and in the bulk liquid to the total solute above
versy regarding the necessity to include or exclude solute.. for an exponential profile at a sharp interface freezing at
drag is resolved quite naturally. Early models that treatedhe same speed. This was found to be unsatisfactory because
solute drag(e.g., that of Cahni17]) were applied to grain this alternate definition does not reproduce the correct limit
growth in impure solids. Here a separate driving force fork—1 for large velocities, as can be seen from the form of the
grain growth was assumed to exigtg., induced by curva- asymptotic expansion foc(z) in our model. The concern

FIG. 9. Experimental values fof, (see[58]) plotted versus the
quantity Inkz/(ke—1). The line is a linear fit through the origin.

B. Solute drag

24 Vp

T=To~Vigat 52

m CIn(1kg)+---, (70

where we have used the expression¥gy in Eq. (63). The
temperature in Eq(14) that is predicted by the CG model
may be expanded for largé/V, to yield that

-V
T=T0—V/,uA+avaLcocln(1/kE)+ (T

VI. DISCUSSION
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about our definition was clearly manifest when we examinedormed with a linear dependence of the logarithm of the dif-
situations where significant interface adsorption is presenfusion coefficient on the phase field did not agree with the
For example, for a stationary interface at equilibrium, posi-CG model of Aziz and Kaplan.

tive surface adsorption leads to a valuecgf,, larger than Depending on the choice of double-well potential, viz.,
the equilibrium value o, present in the bulk of the liquid, the barrier heights of the two components, more complex
so that the definitiori51) leads to an inappropriate value for behavior of thek(V) relation is predicted by the phase-field
k in this simple case. We therefore confined our attention tanodel, including nonmonotonic behavior similar to that ex-
cases of negative interface adsorption With< 1, where the hibited by the Baker-Cahn and Hillert-Sundman models.
identification ofc, with c,,, at least does not lead to obvi-

ous inconsistencies. _ _ _ . ACKNOWLEDGMENTS
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lation results forVy are found to depend on the values of

D(¢) in the interfacial region and not necessarily on the APPENDIX

bulk values ofD, and Dg. This is also clear from the

asymptotic analysis results: The large-velocity analysis holds In the limit of high solidification rates it is possible to
for either solidification or melting and similar conclusions obtain approximate expressions for the interface temperature
are obtained for both cases. For example, with the lineaand solute profiles. In order to understand the numerical re-
form (46) for D(¢), computed values fov, are found to  sults presented above in which solute trapping is significant
scale with the arithmetic mearD( + Dg)/2 of the bulk dif-  but the effects of kinetics are comparatively minor, we con-
fusivities and withDs<D, the numerical values o, for ~ sider an asymptotic solution in the limit of large velocities
both solidification and melting are roughly, /2. However, ~where V is identified as being of a magnitude so that
in general, the predicted values fuf, are sensitive to the D /l,<V<u,T,. Hence we consider the simplified set of
assumed form foiD(¢). Aziz and co-workerssee[58])  equations in which the effects of interface attachment kinet-
have observed that the experimental value¥gffor solidi- ics are eliminated by settingl/; =0. This removes the term

fication) do not correlate strongly with eithdd, or Ds.  v/%, from the leading-order expression for the interface
These findings are consistent with our results for models ofemperature and simplifies the subsequent analysis. For sim-

D(¢#) in which D, is uncorrelated t@, or Ds. plicity we also consider the case,= o ; the more general
analysis for the case,# og is given in[44]. We find that
VIl. CONCLUSIONS the resulting large velocity analysis withM /=0 is a useful

limit for understanding the solute trapping that is observed

~ Solutions to phase-field governing equations for alloy soexperimentally in metals for velocities on the order of meters
lidification with a finite interface thickness that neglect the yer second.

gradient energy due to concentration exhibit solute trapping \ye perform an asymptotic expansion for large velocities

and dissipation due to solute drag. _ _ by expanding the variables in the form
In particular, it is shown thata) the governing equation

for the concentration recovers the sharp interface notion that 1
the jump in interdiffusion potential across the interface de- d=¢O+ oM+ ... (Ala)
pends on the velocity, leading to the velocity dependence of v
the partition coefficient, an¢b) the governing equation for
the phase field recovers the notion that the velocity depends ) 0
on the driving force for solidification following the tangent- =t ye it (Alb)
to-curve rule with dissipation due to solute drag, leading to
the velocity dependence of the interface temperature.

Numerical results as well as high-velocity asymptotic re- T=TO4+ ET(1>+ . (Alc)
sults for the velocity dependence of temperatti(®) and \Y
solute partitioningk(V) were explored for a particular choice
of double-well potential, an ideal solution, linear dependencesubstituting these expansions into the governing equations,
of the diffusion coefficient on the phase field, and similarand solving the resulting equations order by order. The pro-
barrier heights for the pure components, i\, and Wg. cedure is summarized in dimensional form, although the ac-
Under these conditions the results agree closely with the C@ial expansion is best performed in dimensionless variables.
model of Aziz and Kaplan for a particular choice of their At leading order the solute equation gives tbf?=c., .
values for(a) the critical speed for trappingp that depends The leading-order phase-field equation then becomes
on kg, viz., proportional to Irkz/(ke—1) for ke<<1 and ap-

proximately proportional to the arithmetic mean of the liquid 424
and solid diffusion coefficientésuch a trend for the depen- €2 =f4(69,c..,T), (A2)
dence ofVp on kg has been seen experimentally by Smith dZ

and Aziz, and (b) the amount of dissipation due to solute
drag o of approximately 24/35. Numerical calculations per- which admits the planar solution
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z
¢(0)— 1—tan (A3)
2la
wherel, is the interface width given in E438) and
CoLlgt+(1—c.)L
T(o)_ B ( ) A (A4)

To= [Colg/Ta+(1—C)LA/TA]
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3449

° L L
0 (Oqy— _ B —ec B
mefm(fﬁ( )€, To) ¢ dz= C°°TB+(1 Coc)TB

is the temperature at which the bulk free energies of the

liquid and solid phases are equal.
At first order the solute equation gives that

—Cx(1—Cy)
(1):— _ (0)
e =— gy D(4° > =[1c(6%c2.To)
(A5)
from which we find that
3|Lg(To—Tg) La(To—Ta)
ch=" _
Ts Ta
Co(1—cC.)D(4?)
RT./o- ech FINE (AB)

The first-order phase-field equation has the form

d2¢>(1)
€ 372 —f¢¢(¢(0>,cw,-|-o)¢,(l)
:f¢c(¢(0)vcw1TO)C(1)+f¢T(¢(O)1C°®!TO)T(DI
(A7)
which has a solvability condition
o=f_ foe( 99, To)cVpVdz
+TW f fyr(¢9.c.., T dz  (AB)

that allows the determination d@%). We have

(A9)
and
|7t . e g0z
_fx wd 0)
- 7300 d_z[fc(d) vcwiTO)]dZ
_RTolvm
= o(i-c. )f [c(z )]ZD(¢<0>) (A10)

The latter integral is difficult to evaluate in closed form for
general diffusivitiesD (¢(?); for the case of constant diffu-
sivitiesD (¢(?) =D, , however, the integral can be evaluated
to yield the following expression for the first-order tempera-
ture correction:

T =9 C..(1—C.)D, /4
35 (RTo/um)[Coulg/Ta+ (1—Co)La/TA]
Le(To—Te) La(To=Ta)]?
T (A11)

To obtain the limiting forms of these expressions that are
given in Sec. V, we make use of the results

Le(Ta—Ts)

In(l/kE)= W, (AlZ)
m
RTA(ke—1)
M vk, A
m_cC., In(1/k
To=Tat ——2—p—— 1_EE 2 (A14)

which hold in the dilute solution limit.
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